

Synthesis, Characterization & Antimicrobial Activity of Some New Dihydropyridine Derivatives Derived From 3-Aryl-2-Isobutanoyl-N-Phenyl-Acrylamide

D. N. Joshi

Department of Chemistry, R. R. Mehta college of Science & C.L.Parikh College of Commerce Palanpur, Gujarat, India

ABSTRACT

1,4-Dihydropyridine is the significant subclass of pyridines, the best known heterocyclic compounds which are associated with good number of pharmacological activities. 1,4-Dihydropyridines whether symmetrical or asymmetrical are expected for their cardiovascular and other pharmacological properties. Some new 4-Aryl-2,6-diisopropyl-3,5-bis[N-phenyl-aminocarbonyl]-1,4-dihydropyridines.The Dihydropyridine derivatives of Type (1a-j) have been synthesized by the condensation of 3- Aryl-2-isobutanoyl-N-phenyl-acrylamide and 4-Methyl-3-oxo-N-phenyl-pentanamide and ammonia. All the prepared compounds were characterized by their spectral (I.R., N.M.R., Mass) data and screened for their antimicrobial activities.

Key words: 3-Aryl-2-isobutanoyl-N-phenyl-acrylamide, Pyrazoles, Antimicrobial activities.

I. INTRODUCTION

The DHP nucleus is common to numerous bioactive compounds which passes various type of activity like vasodilator, antihypertensive, bronchodilator, antiatherosclerotic, hepatoprotective, antitumor, antimutagenic, geroprotective and antidiabetic.¹⁻⁶ Many drug molecules bearing 1,4-dihydropyridine nucleus are specifically related with calcium channel antagonism⁷ and antihypertensive.⁸ Very wide range of literature regarding the structure, synthesis, stereochemistry and hydrogen transfer mechanism of dihydropyridine is available.9-14.Typical examples of which are nifedipine, verapamil and diltiazem respectively^{15,16}.

This inspired us to synthesize 4-Aryl-2,6-diisopropyl-3,5-bis[N-phenyl-aminocarbonyl]-1,4-

dihydropyridines. The DHP derivatives of Type (1a-j). The structure of synthesized compounds were assigned based on Elemental analysis, I.R. ¹H-NMR and Mass spectral data. The antimicrobial activity was assayed by using the cup-plate agar diffusion method ¹⁷ by measuring the zone of inhibition in mm. All the compounds were screened in vitro for their antimicrobial activities¹⁸ against varieties of bacterial strains and fungi at 40 µg concentration. Standard drugs like Amoxicillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin and Griseofulvin were used for comparison purpose (Table-1).

II. RESULTS AND DISCUSSION

4-Aryl-2,6-diisopropyl-3,5-bis[N-phenylaminocarbonyl]-1,4-dihydropyridines.The

Dihydropyridine derivatives of Type **(1a-j)** have been synthesized by the condensation of 3- Aryl-2isobutanoyl-N-phenyl-acrylamide and 4-Methyl-3oxo-N-phenyl-pentanamide and ammonia. The formulas of the selected compounds were confirmed by the elemental analysis and their structures were determined by IR ,¹ H-NMR , and mass spectral data.

III. ANTIBACTERIAL ACTIVITY

It has been observed from the microbiological data that all compounds **(1a-j)**, were found to be mild to moderately active against Gram positive and Gram negative bacterial strains and fungi. All the compounds were found to possess moderate to good activity against Gram positive and Gram negative strains.

IV. EXPERIMENTAL SECTION

Melting points were taken in open capillary tubes are uncorrected. IR spectra (cm⁻¹) were recorded on Shimadzu-435-IR Spectrophotometer and , ¹H-NMR spectra on Bruker spectrometer(300MHz) using TMS as an internal standard, chemical shift in δ ppm.

General procedure for the preparation of (A) 4-Methyl-3-oxo-N-phenyl-pentanamide :

Take the mixture of Methyl-4-methyl-3-oxopentanoate (1.44 gm, 0.01 mol) and aniline (0.93 gm, 0.01 mol) in toluene, containing few drops of ethylene diamine. The solution was refluxed for 12 hrs. collect methanol using dean & stark. The resulting reaction mass was washed with dilute HCl and finaly with water. Separated toluene was layer was distilled out under vacuum. Yield 71%, m. p. 32oC, Anal.Calcd. for C₁₂H₁₅NO₂ Calcd: C, 70.22; H, 7.37; N, 6.82%, Found: C, 70.71; H, 7.36; N, 6.81%.

General procedure for the preparation of (B) 3- Aryl-2-isobutanoyl-N-phenyl-acrylamide :

The mixture of toluene, 4-Methyl-3-oxo-N-phenylpentanamide(2.05 gm, 0.01mol), benzaldehyde (1.06 gm, 0.01 mol), morpholine and acetic acid was heated to the reflux temperature for 14-16 hrs. Water was removed from the reaction mixture by Dean and Stark. The mixture was cooled at room temperature. Washed the reaction mass with sodiumbisulphite solution and finally washed with distilled water. Distilled out solvent and collect the product, purified in hexane. Yield 80%, MP. 144oC, Anal. Calcd. for C₁₉H₁₈NO₂ Calcd: C, 77.79; H, 6.53; N, 4.77%, Found: C, 77.07; H, 6.11; N, 4.09%.

General procedure for the preparation of 4-Aryl-2,6diisopropyl-3,5-bis[N-phenyl-aminocarbonyl]-1,4dihydropyridine (1a-l) :

To a mixture of 2-Isobutanoyl-3-phenyl-N-phenylacrylamide(2.93gm 0.01mol) and 4-Methyl-3-oxo-Nphenylpentanamide (2.05gm, 0.01mol) in methanol, add liq. ammonia and reflux on water bath for 12 hrs. Cool the reaction mixture at room temperature and stand by for a day. The resulting solid mass was filtered and washed with methanol. The product was recrystalized into DMF and methanol. Yield 56% m.p. 210-212oC Anal.Calcd. for C₃₁H₃₃N₃O₂ Calcd: C, 77.63; H, 6.94; N, 8.76 %, Found: C, 77.56; H, 6.88; N, 8.70%. Similarly, other 4-Aryl-2,6-diisopropyl-3,5-bis[Nphenyl-aminocarbonyl]-1,4-dihydropyridines were prepared. The physical data are recorded in Table No.1

4-Aryl-2,6-diisopropyl-3,5-bis[N-phenylaminocarbonyl]-1,4-dihydropyridine :

Yield 56%, m.p. 210-212°C; IR(KBr) : v 2951,1435 (Alkane,-CH₃), 1384(-C(CH₃)₂), 3068 (Ar, =C-H Str.) , 1606 (C=C str.) , 1172 (Aromatic, C-H i.p.), 1579 pyridine (C=Cstr.) 1295 (C-N Str.),) 3428 (N-H str.) , Carboxamide 1685 (C=O), 3256 (N-H str.)cm⁻¹; ¹H-NMR (CDCl₃) : δ 1.20-1.26 (dd, 6H, -CH-(CH₃)₂, 3.50-3.58 (m, 1H-(CH₃)₂-CH) , 5.49 (s,1H, pyrz-H), 7.16-7.58, (overlapped, 15H, Ar-H) , 7.65 (s, 1H, N-H). , 8.72 (s, 2H, N-H) Mass m/z 479 . M.F.: C₃₁H₃₃N₃O₂.

Characterization data of the compounds (1a-l) :									
comp	R	Molecular	Mole.Wt	M.P.	Nitrogen %				
d		formula		(°C)	Calcd	Found			
no.									
1a	-C6H5	C31H33N3O2	479	210	8.76	8.70			
1b	-4-Cl-C ₆ H ₄	C31H32N3O2Cl	514	249	8.17	8.20			
1c	-2-Cl-C6H4	C31H32N3O2Cl	514	256	8.17	8.16			
1d	-2-Cl-C6H4	C31H32N3O2Cl	514	239	8.44	8.41			
1e	-2-OH- C6H4	C31H33N3O3	495	258	7.99	7.95			
1f	-2-OH- C6H4	C31H33N3O3	495	235	8.48	8.46			
1g	-4-CH3- C6H4	C32H35N3O2	493	223	8.51	8.47			
1h	-4- OCH3- C6H4	C31H33N3O3	509	229	8.25	8.24			
1j	-4-NO2- C6H4	C31H32N4O4	524	244	10.68	10.62			
1k	-3-NO2- C6H4	C31H32N4O4	524	253	10.68	10.59			

Table 1

Table 2

compd	Antibact	Antifungal			
no.					activity
	S.aureus	B.subtillis	Aero genes	Р.	A.niger
				aeruginosa	
1a	15	12	17	18	17
1b	14	13	15	17	19
1c	13	10	16	21	18
1d	17	24	15	14	16
1e	11	9	12	10	16
1f	12	8	10	13	17
1g	14	12	17	18	25
1h	18	14	23	13	17
1i	14	15	15	15	18
1j	25	16	18	18	17
Amoxicillin	25	25	20	22	0
Benzyl	18	19	21	21	0
penicillin					
Ciprofloxacin	20	15	22	16	0
Griseofulvin	0	0	0	0	26

V. CONCLUSION

The present study leads to a convenient synthetic method for the synthesis of new compounds. Which show significant antibacterial and antifungal activity. Further investigation with appropriate structural modification of the above compounds may result in therapeutically useful products.

VI. ACKNOWLEDGMENT

Author is thankful to Department of Chemistry Saurashtra University Rajkot for I.R., N.M.R., Mass spectral & elemental analysis.

VII. REFERENCES

- Godfraind T., Miller R. & Wibo M.; Pharmacol. Rev., 38, 321 (1986).
- [2]. Janis R. A., Silver P. J., Triggle D.; J. Adv. Drug Res., 16, 309 (1987).
- [3]. Sausins A. & Duburs G.;Heterocycles, 27, 269 (1988).
- [4]. Mager P. P., Coburn R. A., Sol. A. J., Triggle D. J. & Rothe H.;Drug Discovery 8, 273(1992).
- [5]. Mannhold R., Jablonka B., Voigdt W., Schoenafinger K. & Schraven E.; J. Med.Chem., 27, 229 (1992).
- [6]. Gaudio A. C., Korolkovas A. & Takahata Y.;J. Pharm. Sci., 83, 1110 (1994).
- [7]. Alker D., Arrowsmith J. E., Cambell S. E. & Cross, P. E.; Eur. J. Med. Chem., 26 (9), 907 (1991).
- [8]. Cupka P.;Czech. CS 243, 591 (1987); Chem. Abstr. 110, 8051 (1989).
- [9]. Singer T. P. & Kearney E. B.; Advan. Enzymol., 15, 79 (1954).
- [10]. Kaplan N. O.; Rex. Chem. Progr., 16, 177 (1955).
- [11]. Westhiemer F. H.; Advan. Enzymol., 24, 469 (1962).
- [12]. Sund H., Diekmann K. & Wallenfels K.; Advan. Enzymol., 26, 115 (1964).
- [13]. Colowick S. P., Van Eys J. & Park J. H.; Compr. Biochem., 14, 1 (1966).
- [14]. Chaykin S.; Ann. Rev. Biochem., 36, 149 (1967).
- [15]. Therapeutic guidelines, cardiovascular, 3rd ed. Victoria:Therapeutic Guidelines; (1998).
- [16]. Calcium channel blocking agents in USP DI. 22nd ed.:Micromedex; . 42, 727 (2002).
- [17]. A. L. Barry; The antimicrobial susceptibility test: Principle and practices, edited by Illuslea & Febiger , (Philadelphia), USA, 180; Biol. Abstr., 1977, 64, 25183
- [18]. Panda J. Srinivas S. V., Rao M. E.; J. Indian Chem. Soc., 79(9), 770-1 (2002); Chem. Abstr., 138, 153499n (2003).